Interactions
We can couple a scalar field 4 to
the Dirac equation by introducing
the term

$$g q \overline{2} \overline{2} \overline{2}$$

in the Lagrangian
Similarly, we can couple a vector
field by adding
 $eA_n \overline{4} \overline{7}^m \overline{4}$
 \Rightarrow introduce covariant derivative
 $D_n := \partial_n - ieA_n$
and write
 $Z = \overline{4}(i\overline{7}-m)\overline{4} + eA_n \overline{4}\overline{7}^n \overline{2}$
 $= \overline{4}(i\overline{7}m_n - m)\overline{4}$
 \Rightarrow the btal Lagrangian for a Dirac
field interacting with vector field
of mass μ :
(1) $Z = \overline{4}(i\overline{7}m_n - m)\overline{4} - \frac{1}{4}E_n \overline{7}^m - \frac{1}{2}m^2A_n^m$

If *m* vanishes, eq. (i) is invariant
under gange transformations

$$A_{n}(x) \mapsto A_{n}(x) + \partial_{n} \mathcal{E}(x)$$

 $S \mathcal{H}(x) = i\mathcal{E}(x) \in \mathcal{H}(x)$
 $\Rightarrow SS = -\int d^{4}x f^{n}(x) \partial_{n} \mathcal{E}(x) \quad (Noether)$
with $f^{n} = -i \frac{\partial \mathcal{K}}{\partial (2n)} e^{i\varphi}$ and $\partial_{n} f^{-i\varphi}$
 $\Rightarrow A_{n} \text{ couples to the conscrued current}$
 $f^{n} = 2\overline{i} \gamma^{n} \mathcal{H}$
Varying (i) (120) with respect to $\overline{\mathcal{I}}$,
we obtain:
 $[i\gamma^{m}(\partial_{n} - ieA_{n}) - m]\mathcal{H} = 0$ (2)
Charge conjugation and onti-matter
With coupling to the electromagnetic
field, we have arrived at the
concept of charge
 $\rightarrow \text{ consider } [-i\gamma^{m}(\partial_{n} + ieA_{n}) - m]\mathcal{H}^{*} = 0$ (2)

-
$$\gamma^{n*}$$
 also satisfy the clifford alg.
($\{\gamma^{n*},\gamma^{n*}\} = 2\gamma^{nn}$)
 $\rightarrow \gamma$ -matrices just in different basis
thus there must be a matrix C,
such that
 $-\gamma^{n*} = (C\gamma^{0})^{-1}\gamma^{n}(C\gamma^{0})$ (4)
Note: the choice $(\gamma^{0} \text{ is conventional})$
Plugging (4) back to (3), we find
 $[i\gamma^{n}(\partial_{n} + ieA_{n}) - m]\gamma_{c} = 0$ (5)
where $\gamma_{c} := C\gamma^{0}\gamma^{*}$
 \rightarrow the field γ_{c} described by (5),
has same mass but opposite charge
(namely e'=-e) as compared to (2) !
 \rightarrow have found the "positron"
We write the defining eq. for C as
 $C\gamma^{n*}\gamma^{n}C^{-1} = \gamma^{n}$

complex conjugating
$$(r^{-})^{+} = t^{0}r^{n}r^{0}$$
, we get
 $(r^{-})^{+} = t^{0}r^{n}r^{0}$ if t^{0} real
 $\rightarrow (r^{-})^{+} = -C^{-}t^{n}C$
In both Dirac and Wey basis r^{2} is
only immaginary r^{-} matrix
 \rightarrow equation (4) says that (t^{0}
commutes with t^{2} but
anticommutes with r', t^{0}, t^{3}
 $\rightarrow C = r^{2}t^{0}$ (up to phase)
you can check: $r^{2}r^{n*}r^{2} = r^{m}$
 $\rightarrow 4c = r^{2}t^{*}$
(an also check :
 $t_{5}(2t_{L})_{c} = t(4t_{L})_{c} \rightarrow \text{right-handed}$
 $\cdot T_{5}(2t_{R})_{c} = -(2t_{R})_{c} \rightarrow \text{left-handed}$
 $\rightarrow \text{charge conjugation reverses}$
chirality !

Under Lorentz trips.
$$4_{c}$$
 transforms as
 $4 \mapsto e^{\frac{i}{4}} \stackrel{\forall w \to 0}{} \stackrel{\forall w \to$

$$\rightarrow i \mathcal{J} \mathcal{J}_{c} = m\mathcal{H}$$
and thus
$$-\partial^{2} \mathcal{H} = i \mathcal{J}(i \mathcal{J} \mathcal{H})$$

$$\left(= -\frac{1}{2} \{\mathcal{J}, \mathcal{J}'\} - 2\mathcal{J} \mathcal{H}$$

$$= -\mathcal{I}^{m} \partial_{n} \mathcal{J}_{c} \mathcal{H}$$

$$= m^{2} \mathcal{H}$$

$$\rightarrow m \text{ is indeed the mass of }$$

$$\text{ the particle associated to } \mathcal{H}$$

$$The Majorana eq. (6) can be$$

$$obtained from the Zograngian$$

$$\mathcal{I} = \mathcal{H} i \mathcal{J} \mathcal{H} - \frac{1}{2} m(\mathcal{H} \mathcal{C} \mathcal{H} + \mathcal{H} \mathcal{C} \mathcal{F}^{T})$$

$$upon varying \mathcal{H}.$$

$$Note: The Majorana eq. preserves
handedness (contrary to Dirac eq.).
This can be checked by multiplying
$$eq. (6) \text{ from both sides with } f_{5}$$

$$and check that the eigenvalues motion$$$$

Time reversal:

In 1932 Wigner showed that time reversal is represented by anti-unitary operator:

Schrödinger eq. i & 2f(f) = +12f(f) $(say H = -\frac{1}{2m} \nabla^2 + V(\bar{x}))$ -> consider transformation t +++ =- t want (o find '4'(f') such that $\left(\frac{9}{2t}\right) \mathcal{L}'(t') = \mathcal{H}\mathcal{L}'(t')$ write 4'(F') = T4(F), where T some operator $- > i \frac{\partial}{\partial(-t)} T \Upsilon(t) = H T \Upsilon(t) |. T^{-1}$ $T^{-1}(-i)T \frac{\partial}{\partial t} \mathcal{L}(t) = T^{-1}HT\mathcal{L}(t) = H^{2}\mathcal{L}(t)$ (since H is indep. of t) - $\neg \neg (-i) \neg = i$ "In quantum physics, flipping time means flipping i as well." Zet now T=UK, where K is compl. conj.

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum$$

Once again, we want

$$i\left(\frac{\partial}{\partial f'}\right) \Psi'(f') = H\Psi'(f'), \quad \Psi'(f') = T\Psi(f)$$
impose $T^{-1}HT = H$, set $T = UK$
 $\rightarrow KU^{-1}HUK = H$, set $T = UK$
complex
c

CPT theorem: Any local Zorentz invariant field theory must be invariant under combined time-reversal, Parity, and charge conjugtion operations: "CPT invariance"

We have $CPT \phi(x) [CPT]^{-1} = \int^{*} \int^{*} \chi^{*} \phi^{\dagger}(-x)$ $CPT \phi_{n}(x) [CPT]^{-1} = -\int^{*} \int^{*} \chi^{*} \phi^{\dagger}(-x)$ $CPT \psi(x) [CPT]^{-1} = -\int^{*} \int^{*} \chi^{*} \chi^{*} \chi^{*} (-x)$ \longrightarrow choose $\int \int \chi \eta = 1$ Can check that any interaction term built from these is invariant under CPT